Ad Code

(^_^)

Simplified Design of Reinforced Concrete Buildings 4th Edition Mahmoud E. Kamara Lawrence C. Novak

This book explains Reinforced Concrete Design that complied with ACI 318-11 (American Concrete Institute) for Building Code included Examples and Problem. Now you can consider a list of content below.

Title: Simplified Design of Reinforced Concrete Buildings 4th Edition Mahmoud E. Kamara Lawrence             C. Novak
Page Number: 337 pages
File type: pdf
File size: 27.6 MB

Content
Chapter 1 A Simplified Design Approach
    1.1 THE BUILDING UNIVERSE
    1.2 COST EFFICIENCIES 
    1.3 THE COMPLEX CODE 
        1.3.1 Complex Structures Require Complex Designs 
    1.4 A SIMPLE CODE
    1.5 PURPOSE OF SIMPLIFIED DESIGN 
    1.6 SCOPE OF SIMPLIFIED DESIGN
    1.7 BUILDING EXAMPLES
        1.7.1 Building No. 1—3-Story Pan Joist Construction 
        1.7.2 Building No. 2—5-Story Flat Plate Construction
    1.8 PRELIMINARY DESIGN
        1.8.1 Floor Systems
        1.8.2 Columns 
        1.8.3 Shearwalls
        1.8.4 Footings 
        1.8.5 Fire Resistance
                References 
Chapter 2—Simplified Frame Analysis 
    2.1 INTRODUCTION 
    2.2 LOADING 
        2.2.1 Service Loads 
        2.2.2 Wind Loads
            2.2.2.1 Example: Calculation of Wind Loads – Building #2 
            2.2.2.2 Example: Calculation of Wind Loads – Building #1
        2.2.3 Live Load Reduction for Columns, Beams, and Slabs 
            2.2.3.1 Example: Live Load Reductions for Building #2
        2.2.4 Factored Loads 
    2.3 FRAME ANALYSIS BY COEFFICIENTS 
        2.3.1 Continuous Beams and One-Way Slabs
        2.3.2 Example: Frame Analysis by Coefficients 
    2.4 FRAME ANALYSIS BY ANALYTICAL METHODS 
        2.4.1 Stiffness 
        2.4.2 Arrangement of Live Load
        2.4.3 Design Moments 
        2.4.4 Two-Cycle Moment Distribution Analysis for Gravity Loading 
    2.5 COLUMNS
    2.6 LATERAL LOAD ANALYSIS
        2.6.1 Portal Method
        2.6.2 Examples: Wind Load Analyses for Buildings #1 and #2 
                References 
Chapter 3—Simplified Design for Beams and One-Way Slabs
    3.1 INTRODUCTION 
    3.2 DEPTH SELECTION FOR CONTROL OF DEFLECTIONS 
    3.3 MEMBER SIZING FOR MOMENT STRENGTH 
        3.3.1 Notes on Member Sizing for Economy 
    3.4 DESIGN FOR FLEXURAL REINFORCEMENT
    3.5 REINFORCING BAR DETAILS 
    3.6 DESIGN FOR SHEAR REINFORCEMENT 
        3.6.1 Example: Design for Shear Reinforcement 
        3.6.2 Selection of Stirrups for Economy 
    3.7 DESIGN FOR TORSION 
        3.7.1 Beam Sizing to Neglect Torsion 
            3.7.1.1 Example: Beam Sizing to Neglect Torsion 
        3.7.2 Beam Design Considering Torsion
        3.7.3 Simplified Design for Torsion Reinforcement
            3.7.3.1 Example: Design for Torsion Reinforcement  
    3.8 EXAMPLES: SIMPLIFIED DESIGN FOR BEAMS AND ONE-WAY SLABS
        3.8.1 Example: Design of Standard Pan Joists for Alternate (1) Floor System (Building #1) 
        3.8.2 Example: Design of Wide-Module Joists for Alternate (2) Floor System (Building #1) 
        3.8.3 Example: Design of the Support Beams for the Standard Pan Joist Floor Along a
 Typical N-S Interior Column Line (Building #1) 
        References
Chapter 4—Simplified Design for Two-Way Slabs
    4.1 INTRODUCTION
    4.2 DEFLECTION CONTROL–MINIMUM SLAB THICKNESS 
    4.3 TWO-WAY SLAB ANALYSIS BY COEFFICIENTS—DIRECT DESIGN METHOD 
    4.4 SHEAR IN TWO-WAY SLAB SYSTEMS 
        4.4.1 Shear in Flat Plate and Flat Slab Floor Systems 
    4.5 COLUMN MOMENTS DUE TO GRAVITY LOADS 
    4.6 REINFORCEMENT DETAILING
    4.7 EXAMPLES: SIMPLIFIED DESIGN FOR TWO-WAY SLABS 
        4.7.1 Example: Interior Strip (N-S Direction) of Building #2, Alternate (2)
        4.7.2 Example: Interior Strip (N-S Direction) of Building #2, Alternate (1) 
                References 
Chapter 5—Simplified Design for Columns 
    5.1 INTRODUCTION 
    5.2 DESIGN CONSIDERATIONS
        5.2.1 Column Size
        5.2.2 Column Constructability 
        5.2.3 Column Economics 
    5.3 DESIGN STRENGTH FOR COLUMNS
    5.4 PRELIMINARY COLUMN SIZING
    5.5 SIMPLIFIED DESIGN FOR COLUMNS
        5.5.1 Simplified Design Charts—Combined Axial Load and Bending Moment 
            5.5.1.1 Example: Construction of Simplified Design Chart
        5.5.2 Column Ties
        5.5.3 Biaxial Bending of Columns 
            5.5.3.1 Example: Simplified Design of a Column Subjected to Biaxial Loading
    5.6 COLUMN SLENDERNESS CONSIDERATIONS
        5.6.1 Non-sway versus Sway Frames 
        5.6.2 Minimum Sizing for Design Simplicity
    5.7 PROCEDURE FOR SIMPLIFIED COLUMN DESIGN
    5.8 EXAMPLES: SIMPLIFIED DESIGN FOR COLUMNS
        5.8.1 Example: Design of an Interior Column Stack for Building #2 Alternate (1)—Slab and
Column Framing Without Structural Walls (Sway Frame)
        5.8.2 Example: Design of an Interior Column Stack for Building #2 Alternate (2)—Slab and
Column Framing with Structural Walls (Non-sway Frame) 
        5.8.3 Example: Design of an Edge Column Stack (E-W Column Line) for Building #1—
3-story Pan Joist Construction (Sway Frame)
    5.9 COLUMN SHEAR STRENGTH 
        5.9.1 Example: Design for Column Shear Strength 
        References
Chapter 6—Simplified Design for Structural Walls
    6.1 INTRODUCTION 
    6.2 FRAME-WALL INTERACTION
    6.3 WALL SIZING FOR LATERAL BRACING
        6.3.1 Example: Wall Sizing for Non-sway Condition
    6.4 DESIGN FOR SHEAR
        6.4.1 Example 1: Design for Shear
        6.4.2 Example 2: Design for Shear
    6.5 DESIGN FOR FLEXURE 
        6.5.1 Example: Design for Flexure 
            References
Chapter 7—Simplified Design for Footings
    7.1 INTRODUCTION 
    7.2 PLAIN CONCRETE VERSUS REINFORCED CONCRETE FOOTINGS 
    7.3 SOIL PRESSURE
    7.4 SURCHARGE
    7.5 ONE-STEP THICKNESS DESIGN FOR REINFORCED CONCRETE FOOTINGS 
        7.5.1 Procedure for Simplified Footing Design
    7.6 FOOTING DOWELS
        7.6.1 Vertical Force Transfer at Base of Column
        7.6.2 Horizontal Force Transfer at Base of Column
    7.7 EXAMPLE: REINFORCED CONCRETE FOOTING DESIGN
    7.8 ONE-STEP THICKNESS DESIGN FOR PLAIN CONCRETE FOOTINGS
        7.8.1 Example: Plain Concrete Footing Design
        References
Chapter 8—Structural Detailing of Reinforcement for Economy
    8.1 INTRODUCTION
    8.2 DESIGN CONSIDERATIONS FOR REINFORCEMENT ECONOMY
    8.3 REINFORCING BARS 
        8.3.1 Coated Reinforcing Bars
    8.4 DEVELOPMENT OF REINFORCING BARS
        8.4.1 Introduction 
        8.4.2 Development of Deformed Bars in Tension 
        8.4.3 Development of Hooked Bars in Tension 
        8.4.4 Development of Bars in Compression
    8.5 SPLICES OF REINFORCING BARS
        8.5.1 Tension Lap Splices
        8.5.2 Compression Lap Splices
    8.6 DEVELOPMENT OF FLEXURAL REINFORCEMENT 8-11
        8.6.1 Introduction
        8.6.2 Requirements for Structural Integrity 
        8.6.3 Recommended Bar Details
    8.7 SPECIAL BAR DETAILS AT SLAB-TO-COLUMN CONNECTIONS 
    8.8 SPECIAL SPLICE REQUIREMENTS FOR COLUMNS
        8.8.1 Construction and Placing Considerations
        8.8.2 Design Considerations 
        8.8.3 Example: Lap Splice Length for an Interior Column of Building #2, Alternate (2) Slab and
Column Framing with Structural Walls (Non-sway Frame) 
        8.8.4 Example: Lap Splice Length for an Interior Column of Building #2, Alternate (1) Slab and
Column Framing Without Structural Walls (Sway Frame) 
        References
Chapter 9—Design Considerations for Economical Formwork
    9.1 INTRODUCTION
    9.2 BASIC PRINCIPLES TO ACHIEVE ECONOMICAL FORMWORK 
        9.2.1 Standard Forms
        9.2.2 Repetition 
        9.2.3 Simplicity
    9.3 ECONOMICAL ASPECTS OF HORIZONTAL FRAMING
        9.3.1 Slab Systems 
        9.3.2 Joist Systems
        9.3.3 Beam-Supported Slab Systems 
    9.4 ECONOMICAL ASPECTS OF VERTICAL FRAMING
        9.4.1 Walls 
        9.4.2 Core Areas
        9.4.3 Columns
    9.5 GUIDELINES FOR MEMBER SIZING 
        9.5.1 Beams
        9.5.2 Columns 
        9.5.3 Walls
    9.6 OVERALL STRUCTURAL ECONOMY
        References
Chapter 10—Design Considerations for Fire Resistance
    10.1 INTRODUCTION
    10.2 DEFINITIONS
    10.3 FIRE RESISTANCE RATINGS
        10.3.1 Fire Test Standards
        10.3.2 ASTM E 119 Test Procedure
    10.4 DESIGN CONSIDERATIONS FOR FIRE RESISTANCE
        10.4.1 Properties of Concrete
        10.4.2 Thickness Requirements
        10.4.3 Cover Requirements
    10.5 MULTICOURSE FLOORS AND ROOFS
        10.5.1 Two-Course Concrete Floors 
        10.5.2 Two-Course Concrete Roofs
        10.5.3 Concrete Roofs with Other Insulating Materials
            Reference
Chapter 11— Design Considerations for Earthquake Forces 
    11.1 INTRODUCTION
    11.2 SEISMIC DESIGN CATEGORY (SDC) 
    11.3 REINFORCED CONCRETE EARTHQUAKE-RESISTING STRUCTURAL SYSTEMS 
    11.4 STRUCTURES EXEMPT FORM SEISMIC DESIGN REQUIREMENTS
    11.5 EARTHQUAKE FORCES
    11.6 EQUIVALENT LATERAL FORCE PROCEDURE
        11.6.1 Design Base Shear
        11.6.2 Vertical Distribution of Seismic Forces 
            11.6.2.1 Distribution of Seismic Forces to Vertical Elements of the Lateral Force  Resisting System 
            11.6.2.2 Direction of Seismic Load 
        11.6.3 Load Combinations for Seismic Design 
    11.7 OVERTURNING
    11.8 STORY DRIFT
    11.9 P-Δ EFFECT
    11.10 DESIGN AND DETAILING REQUIREMENTS 
    11.11 EXAMPLES
        11.11.1 Example 1 – Building # 2 Alternate (2) Shearwalls
        11.11.2 Example 2 – Building # 1 Alternate (1) Standard Pan Joist
        References
Chapter 12— Introduction to Sustainable Design 
APPENDIX A TABLE AND NOMOGRAMS
INDEX
   

Post a Comment

0 Comments

Close Menu